Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yuan Gao, ${ }^{\text {a }}$. Yan Zhang ${ }^{\text {b }}$ and Shujiang Tu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Shenzhen University, Shenzhen 518060, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.116$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

10-(4-Methoxyphenyl)-3,7-dimethyl-1H,9H,10H-dipyrano[3,4-e:4', $\left.3^{\prime}-b\right]$ pyran-1,9-dione

The title compound, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6}$, was synthesized by the reaction of 4-methoxybenzaldehyde with triacetic acid lactone in ethylene glycol catalyzed by KF-alumina. The pyran ring adopts a boat conformation and the benzene ring is perpendicular to the mean plane through the fused ring system.

Comment

The utility of fluoride salts as potential bases in a variety of synthetic reactions has been recognized in recent years (Ando \& Yamawaki, 1981; Clark, 1980). The condensation reaction of carbonyl compounds with active methylene compounds is one of the most important synthetic methods leading to substituted alkenes (Yamawaki et al., 1983). In our earlier paper (Wang et al., 2003), we have reported that alumina coated with potassium fluoride is a versatile solid-supported reagent for the Knoevenagel reaction and Michael addition condensation. In the present paper, we report the crystal structure of the title compound, (I).

(I)

In (I), the pyranone rings are each essentially planar. The pyran ring adopts a boat conformation, with atoms O1 and C6 deviating from the $\mathrm{C} 5 / \mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 11$ plane by 0.076 (3) and 0.183 (3) A , respectively (Fig. 1). The methoxy group is almost coplanar with the benzene ring, with a $\mathrm{C} 20-\mathrm{O} 6-\mathrm{C} 17-\mathrm{C} 16$ torsion angle of $8.8(3)^{\circ}$. The C14-C19 benzene ring is perpendicular to the $\mathrm{C} 5 / \mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 11$ plane [dihedral angle $\left.89.14(7)^{\circ}\right]$.

Experimental

Compound (I) was prepared by the reaction of 4-methoxybenzaldehyde (1 mmol) with triacetic acid lactone (2 mmol) in ethylene glycol catalyzed by KF-alumina. Single crystals of (I)

Received 3 January 2006 Accepted 9 January 2006 Online 13 January 2006

organic papers

suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 85%; m.p. $545-547 \mathrm{~K}$). IR $\left(\mathrm{cm}^{-1}\right): 1735,1636,1604,1381,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.24\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right)$, $3.75\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right), 4.78(1 \mathrm{H}, s, \mathrm{CH}), 5.98(2 \mathrm{H}, s, 2 \mathrm{CH}), 6.79(2 \mathrm{H}, d$, $\mathrm{ArH}), 7.25(2 \mathrm{H}, d, \mathrm{ArH})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6} \\
& M_{r}=352.33 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.7018(18) \AA \\
& b=11.090(2) \AA \\
& c=15.757(3) \AA \\
& \beta=96.839(3)^{\circ} \\
& V=1683.2(5) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector	4076 independent reflections
\quad diffractometer	2601 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.032$
Absorption correction: multi-scan	$\theta_{\max }=28.3^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-8 \rightarrow 12$
$T_{\min }=0.951, T_{\max }=0.957$	$k=-14 \rightarrow 14$
12075 measured reflections	$l=-20 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.116$
$S=1.02$
4076 reflections
238 parameters
H-atom parameters constrained

$$
D_{x}=1.390 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3166
reflections
$\theta=2.3-27.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, white
$0.49 \times 0.47 \times 0.43 \mathrm{~mm}$

$$
\begin{aligned}
& 4076 \text { independent reflections } \\
& 2601 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.032 \\
& \theta_{\max }=28.3^{\circ} \\
& h=-8 \rightarrow 12 \\
& k=-14 \rightarrow 14 \\
& l=-20 \rightarrow 19
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0425 P)^{2}\right. \\
& \quad+0.484 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \operatorname{SHELXL97} \\
& \text { Extinction coefficient: } 0.0150(14)
\end{aligned}
$$

All H atoms were positioned geometrically and treated as riding, with C -H distances of $0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for others.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids.

The authors thank the Natural Science Foundation of the Guangdong Province (grant No. 031792)

References

Ando, T. \& Yamawaki, J. (1981). Synth. Org. Chem. Jpn, 39, 14-24. Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, J. H. (1980). Chem. Rev. 80, 429-452.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, X. S., Shi, D. Q. \& Tu, S. J. (2003). Synth. Commun. 33, 119-126.
Yamawaki, J., Kawate, T., Ando, T. \& Hanafusa, T. (1983). Bull. Chem. Soc. Jpn, 56, 1885-1886.

